Deterministic and Robust Optimization Approach for Single Artillery Unit Fire Scheduling Problem
نویسندگان
چکیده
In this study, deterministic and robust optimization models for single artillery unit fire scheduling are developed to minimize the total enemy threat to friendly forces by considering the enemy target threat level, enemy target destruction time, and target firing preparation time simultaneously. Many factors in war environments are uncertain. In particular, it is difficult to evaluate the threat levels of enemy targets definitively. We consider the threat level of an enemy target to be an uncertain parameter and propose a robust optimization model that minimizes the total enemy threat to friendly forces. The robust optimization model represents a semi-infinite problem that has infinitely many constraints. Therefore, we reformulate the robust optimization model into a tractable robust counterpart formulation with a finite number of constraints. In the robust counterpart formulation with cardinality-constrained uncertainty, the conservativeness and robustness of the solution can be adjusted with an uncertainty degree, Γ. Further, numerical experiments are conducted to verify that the robust counterpart formulation with cardinality-constrained uncertainty can be made equivalent to the deterministic optimization model and the robust counterpart formulation with box uncertainty by setting Γ accordingly.
منابع مشابه
Robust production scheduling in open-pit mining under uncertainty: a box counterpart approach
Open-Pit Production Scheduling (OPPS) problem focuses on determining a block sequencing and scheduling to maximize Net Present Value (NPV) of the venture under constraints. The scheduling model is critically sensitive to the economic value volatility of block, block weight, and operational capacity. In order to deal with the OPPS uncertainties, various approaches can be recommended. Robust opti...
متن کاملA Robust Optimization Methodology for Multi-objective Location-transportation Problem in Disaster Response Phase under Uncertainty
This paper presents a multi-objective model for location-transportation problem under uncertainty that has been developed to respond to crisis. In the proposed model, humanitarian aid distribution centers (HADC), the number and location of them, the amount of relief goods stored in distribution centers, the amount of relief goods sent to the disaster zone, the number of injured people transferr...
متن کاملIntegrated planning for blood platelet production: a robust optimization approach
Perishability of blood products as well as uncertainty in demand amounts complicate the management of blood supply for blood centers. This paper addresses a mixed-integer linear programming model for blood platelets production planning while integrating the processes of blood collection as well as production/testing, inventory control and distribution. Whole blood-derived production methods for...
متن کامل3D BENCHMARK RESULTS FOR ROBUST STRUCTURAL OPTIMIZATION UNDER UNCERTAINTY IN LOADING DIRECTIONS
This study has been inspired by the paper "An efficient 3D topology optimization code written in MATLAB” written by Liu and Tovar (2014) demonstrating that SIMP-based three-dimensional (3D) topology optimization of continuum structures can be implemented in 169 lines of MATLAB code. Based on the above paper, we show here that, by simple and easy-to-understand modificati...
متن کاملA Robust Optimization Approach for a p-Hub Covering Problem with Production Facilities, Time Horizons and Transporter
Hub location-allocation problems are currently a subject of keen interest in the research community. However, when this issue is considered in practice, significant difficulties such as traffic, commodity transportation and telecommunication tend to be overlooked. In this paper, a novel robust mathematical model for a p-hub covering problem, which tackles the intrinsic uncertainty of some param...
متن کامل